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AI4SES: AI 4 Science, Energy, & Security
Goal: Construct a report and plan that outlines and makes the case for a 
10-20 year program-project that enables the creation of a world 
leading capability in AI for DOE mission spaces

– Identify directions, approaches, and where possible specific challenge 
problems, that should be pursued

– Identify the program scale needed to make progress

– Provide the “core content” that will help in forming budget requests and 
overall program approach

– Make the case for what needs to be done and why



FOCUS: Leadership AI for DOE mission needs

Leverages relevant DOE assets
§ Exascale class computing
§ Exascale class data infrastructure
§ Large-scale Experimental Facilities
§ Large-scale Scientific Simulation Capabilities
§ Interdisciplinary teams

Scientific discovery, user facilities, energy research, 
environment and national security



Aiming for transformation of DOE research

§ 1,300+ researchers participated in four town halls 
during summer 2019 and summer 2022: 
Modeled after exascale town halls in 2007-2009

§ A DOE major initiative recommended in August 
2020 by subcommittee of department’s Advanced 
Scientific Computing Advisory Committee

§ Broad opportunities in AI
- Biology, climate, chemistry, materials, physics, 

cosmology, nanoscience, fusion
- Energy and national security
- Integration with scientific facilities



Priority roles for AI in science, energy, & security

AI for advanced 
properties inference 
and inverse design

Energy storage, proteins, 
polymers

AI and robotics 
for autonomous 
discovery

Biology, chemistry, materials, 
photon and neutron sources

AI-based surrogates
for high-performance
computing

Climate ensembles, quantum  
chemistry, cosmology, effective 
zettascale on exascale

AI for software
engineering and
programming 

Code translation, optimization, 
quantum compilation, algorithms 

AI for prediction and 
control of complex 
engineered systems

Accelerators, buildings, cities, 
reactors, power grids, networks

Foundation AI 
for scientific 
knowledge

Hypothesis formation, math 
theory and modeling synthesis
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Example: Foundation models for science
§ Foundation models (LLMs, VLMs, etc.) are single large-scale models that 

have been pretrained in self supervised mode on large datasets from many 
sources (text, papers, datasets, code, molecules, etc.)

§ Models are used in a “generative” fashion to 
compute “completions” in response to ”prompts”

§ They are often wrapped in additional tools to 
clean up and filter outputs to improve the 
human interaction experience (e.g., ChatGPT)

§ They are remarkably flexible and exhibit 
emergent behaviors at scale (e.g., 
spontaneously complete tasks they were 
not trained explicitly to do, such as translate 
between languages, or summarize text)

§ Several efforts underway in DOE labs to build Foundation Models 
for science (e.g., 9 Yards at ORNL, AuroraGPT at Argonne)



Foundation models for science — Opportunities
§ FMs can summarize and distill knowledge – extract information from million 

of papers into compact computing representation – protein-protein interaction 
networks, materials compositions, code kernels, protein sequences, etc.

§ FMs can synthesize – combine information from multiple sources –
generate small programs for specific tasks – quantum computing programs 
using QISkit & Cirq, derivations for applied physics, code for visualization and 
animation, etc. 

§ FMs can generate plans, solve logic problems and write experimental 
protocols for robots – powering self-driving labs, generate strategies for 
problem solving, and planning for testing hypotheses

§ FMs, with additional research, may be able to generate hypotheses to be 
tested and new theories for exploration – a full-time scientific 
assistant that learns from across all of DOE science



Foundation models — Impacts now and future
§ Dramatically increased coding productivity (2x-3x has been demonstrated)
§ Via APIs and remote access, extract in one weekend what would have taken 

months or years to do via traditional curation (PPI network reconstruction)
§ Generate protein sequences for given 

purpose (function, interaction)
§ Generate materials compositions 

that yield desired properties
§ Given raw experiment data, generate 

paper summary, tables, figures
§ Given conjectures and corollaries, 

generate a fully detailed proof
§ Translate codes between languages
§ Optimize code loops for GPUs
§ Many, many others …



AI for software and programming
§ LLMs specifically developed as coding assistants and coding aids 

have been developed (codex, palm-coder, etc.) 
§ Models are trained on large bodies of code (GitHub, etc.) using 

self-supervised MLM training schemes
§ Models can be improved by boosting, generating random code 

against a simple set of random specifications and incorporating 
that code that correctly implements the spec

§ These models can generate code, translate code, debug code 
and document code

§ Recent systems can also uncompile code and translate binaries
§ Current estimates are that for developers using these tools that 

~40% of the code that is produced can be written by the LLMs
§ Code generated is sometimes not correct, but if used as an 

assistant its usually quickly fixed
§ Models are naturally modular with contexts (windows for training 

and generation) in the 4K to 32K tokens 



AI for software and programming — Opportunities
§ Much of DOE science and technology research involves coding 
§ It has been estimated that DOE has more than 1 Billion LOC across the complex, 

most of which is not under active maintenance
§ ECP investments resulted in 78 applications codes and over other 100 software 

projects being modernized and migrated to Exascale platforms and GPUs  
(estimated at 10-20 Million LOC)

§ Build a FM for DOE scientific coding that knows about DOE code base
§ Migrate codes to GPUs and future architectures
§ Update codes to modern language versions (e.g. Python 3)
§ Automatically document codes 
§ Improve performance through high-level code rewriting and parallelism
§ Library interface porting to new versions
§ Generate scientific codes from natural language descriptions



Thinking at scale is very important
§ DOE and the laboratories were created to 

work on large-scale things in an 
interdisciplinary way

§ Scale is part of what differentiates 
the labs from universities

§ Leading edge research in AI today 
is dominated by large-scale groups 
and teams from industry.

§ Large teams of people ~1000 per 
major AI research group

§ Collections of projects organized 
around AI approaches with long horizons

§ Serious software development effort 
in tools and software

§ Access to vast computing resources
§ Access to vast datasets

https://arxiv.org/pdf/2202.07785.pdf

https://link.springer.com/article/10.1007/JHEP02(2022)074
https://arxiv.org/abs/2107.02157
https://www.nature.com/articles/s42256-022-00441-3
https://arxiv.org/abs/2110.08508
https://arxiv.org/abs/2203.15823
https://neurips.cc/Conferences/2022/ScheduleMultitrack?event=56899
https://arxiv.org/abs/2102.06976
http://deepskieslab.com


Sample of (out of 100+) ML/AI projects underway at Argonne

Strong and weak lensing 
in sky survey data

Prediction of antimicrobial 
resistance phenotypes

Prediction of radiation 
stopping power

Identification and tracking 
of storms

Parameter extraction in 
atom probe tomography

Learning for dynamic 
sampling in spectroscopy

Structure-property-process 
triangle in additive 
manufact.

Vehicle energy 
consumption prediction

Photometric red shift 
estimation

New materials for efficient 
solar cells

Cosmic Microwave 
Background emulation

Enhancement of noisy 
tomographic images

Nowcasting with 
convolutional LSTMs

Efficient climate model 
emulators

Defect-level prediction in 
seminconductors

Flying object detector for 
edge deployment

Discovery of new energy 
storage materials

Reduced order modeling 
of laser sintering



Argonne’s Aurora System > 60,000 Intel GPUs: Science Starts in 2023



Preparing for AI at scale
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In partnership with:

AI at Fermilab 

Nhan Tran

March 22, 2023
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Vision for HEP and AI

Today: how can HEP benefit 
from national initiatives 
and how can our nation 

benefit from AI/ML in HEP?

ai.gov

see also https://www.nsf.gov/cise/ai.jsp
https://science.osti.gov/Initiatives/AI/

Ben Nachman at P5 LBNL Town Hall
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Vision for HEP and AI

Today: how can HEP benefit 
from national initiatives 
and how can our nation 

benefit from AI/ML in HEP?

ai.gov

see also https://www.nsf.gov/cise/ai.jsp
https://science.osti.gov/Initiatives/AI/

Ben Nachman at P5 LBNL Town Hall

Builds diverse, inclusive 
communities; assemble 

multi-disciplinary 
collaborations around 

cross-cutting challenges

AI for physics, physics for AI

FNAL AI project office coordinating activities 
spanning the scientific directorates



Motivation
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Deeper insights & better 
performance


Accelerate time-to-physics

Improved efficiency and 
autonomous operations

Physics-inspired data & models

Robust & generalizable learning


“Fast” & efficient algorithms

HEP builds and operates the most complex devices in science

AI is a pervasive force multiplier that can enable transformative 

scientific capabilities 
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Fermilab unique strength on real-time AI for accelerating HEP science

HEP builds and operates the most complex devices in science

AI is a pervasive force multiplier that can enable transformative 

scientific capabilities



Motivation
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Fermilab unique strength on real-time AI for accelerating HEP science

High performance and 
throughput compute

Intelligent sensing and 
real-time processing

Operations, controls, analysis

Algorithms for HEP science

Physics-inspired data & models;  Robust & generalizable learning; Fast and efficient algorithms

HEP builds and operates the most complex devices in science

AI is a pervasive force multiplier that can enable transformative 

scientific capabilities



Real-time & Fast ML
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https://a3d3.ai/about.html 
fastmachinelearning.org


Applications and Techniques for Fast Machine Learning in Science 
https://doi.org/10.3389/fdata.2022.787421

Fusing powerful ML techniques with experimental 
design decreases the “time to science” and can range 

from embedding real-time feature extraction to be as close as 
possible to the sensor all the way to large-scale ML 

acceleration across distributed grid computing datacenters. 
The overarching theme is to lower the barrier to 

advanced ML techniques and implementations to 
make large strides in experimental capabilities across many 

seemingly different scientific applications. Efficient solutions 
require collaboration between domain experts, machine 
learning researchers, and computer architecture designers…
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https://a3d3.ai/about.html
http://fastmachinelearning.org
https://doi.org/10.3389/fdata.2022.787421


Fast and efficient algorithms

• Efficient and Robust AI: very important 
for scientific sensing/compute

• Broad applications, HEP and beyond


• Building techniques for wider scientific 
and industry communities


• Core research into:

• quantization, sparsity, 

• multi-objective optimization

• edge AI fault tolerance and robustness

• DOE HEP project on efficient algorithms 

from inductive bias (physics-inspired)
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Quantization-aware pruning, arXiv:2102.11289

QONNX, arXiv:2206.07527


An end-to-end codesign workflow of Hessian-aware quantized neural networks for FPGAs and ASICs

Quantized Distilled Autoencoder Model for 4D Transmission Edge Microscopy


Hessian-aware quantization solver more 
efficient than brute-force design

Industry/community 
standards for 

representing quantized 
neural networks 

AI is data and energy hungry
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https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/2206.07527


Embedded systems with HW-SW codesign
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hls4ml, JINST 13 P07027 (2018)

https://fastmachinelearning.org/hls4ml


DUNE SNB, TWEPP/IEEE NSS

Reconfigurable ASCI, IEEE TNS


Strong synergy with microelectronics technologies
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https://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07027
https://fastmachinelearning.org/hls4ml
https://lss.fnal.gov/archive/2022/poster/fermilab-poster-22-217-scd.pdf
http://IEEE%20Trans.%20Nucl.%20Sci.%2068,%202179%20(2021)


Embedded systems with HW-SW codesign
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hls4ml, JINST 13 P07027 (2018)

https://fastmachinelearning.org/hls4ml


DUNE SNB, TWEPP/IEEE NSS

Reconfigurable ASCI, IEEE TNS


Region of Interest

DUNE Supernova detection & 
multi-messenger astronomy

Extracting low energy neutrino signals per wire

Strong synergy with microelectronics technologies
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Embedded systems with HW-SW codesign
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hls4ml, JINST 13 P07027 (2018)

https://fastmachinelearning.org/hls4ml


DUNE SNB, TWEPP/IEEE NSS

Reconfigurable ASCI, IEEE TNS


Region of Interest

DUNE Supernova detection & 
multi-messenger astronomy

Extracting low energy neutrino signals per wire

• New Run 3 algorithms in hardware for 
displaced muons and anomaly detection 

• Several algorithms under investigation for 
HL-LHC trigger


LHC Trigger - FPGA/ASIC

• First modern AI algorithm in 
ASIC for CMS high granularity 
calorimeter


• Silicon-proven for functionality 
and radiation hardness


• R&D towards on-sensor pixel 
readout

Strong synergy with microelectronics technologies
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Robust and Physics-inspired AI
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Robust learning paramount for real-time sensing and controls

Physics-inspired models key for robustness and efficiency

High noise Low noise

Anomaly detection for monitoring, 
controls, and discovery 

Domain adaptation to adjust to 
new datasets and conditions

Optimal physics representations 
& architectures
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JHEP 02 (2022) 074

arXiv: 2107.02157


Nature Machine Intelligence 4, 154 (2022)

arXiv: 2110.08508


EPJC

DUDA, 2022 Neurips Workshop


arXiv:2102.06976

deepskieslab.com

https://link.springer.com/article/10.1007/JHEP02(2022)074
https://arxiv.org/abs/2107.02157
https://www.nature.com/articles/s42256-022-00441-3
https://arxiv.org/abs/2110.08508
https://arxiv.org/abs/2203.15823
https://neurips.cc/Conferences/2022/ScheduleMultitrack?event=56899
https://arxiv.org/abs/2102.06976
http://deepskieslab.com


Robust and Physics-inspired AI
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Robust learning paramount for real-time sensing and controls

Physics-inspired models key for robustness and efficiency

AI-accelerated simulation 
based on physics modeling

High-dimensional data reduction 
(likelihood-free) requires 

uncertainty quantification (UQ)

Semi-/self-supervised algorithms, 
reduce reliance on simulation
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Real-time 
accelerator  
control

NuMI Beam Target 
Predict the NuMI proton beam position, 

intensity, and horn current 

READS 
[Real-time Edge AI Distributed System]


Disentangle Main Injector and Recycler Ring 
beam losses

READS 
Reinforcement learning agent for mu2e slow spill 

to increase spill duty factor

Linac RF optimization 
to keep beam energy constant 

and minimize emittance

Booster GMPS 
Real-time reinforcement learning 
agent in FPGA and surrogate model 

reduces magnet current error

Support for READS 
and LINAC through 
DOE user facility 
grants
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HEP for real-time AI
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Nexus for developing Fast ML benchmarks 
across science

Grand Challenges spur innovation  
• LHC: all sub-detectors analyzing data at 40 MHz 

• DUNE: expansive (non-)accelerator ν program 

(solar, supernova, proton decay, ββ decay)

• Accelerator controls with adaptive online agents 

and digital twin

• Science: Quantum, Magnets, Fusion, 

Neuroscience, Nuclear, Material sciences, etc.

• Industry: Internet-of-Things, AVs, manufacturing
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HEP for real-time AI
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Nexus for developing Fast ML benchmarks 
across science

Grand Challenges spur innovation  
• LHC: all sub-detectors analyzing data at 40 MHz 

• DUNE: expansive (non-)accelerator ν program 

(solar, supernova, proton decay, ββ decay)

• Accelerator controls with adaptive online agents 

and digital twin

• Science: Quantum, Magnets, Fusion, 

Neuroscience, Nuclear, Material sciences, etc.

• Industry: Internet-of-Things, AVs, manufacturing

Partnerships multidisciplinary collaboration with 
industry, academia, and other scientific domains

+ many university partners and others!
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link

https://aibusiness.com/ml/mlcommons-launches-machine-learning-benchmark-for-devices-like-smartwatches-and-voice-assistants


Outlook

Artificial Intelligence is a pervasive force 
multiplier for physics


Transformative scientific capabilities from 
physics grand challenges


Increased investment in diverse collaborations 
for AI for particle physics has, and will continue, 
to bring new technologies to other scientific 
domains and industry
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